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A B S T R A C T

Deep anomaly detection Anomaly Detection (AD)methods have become increasingly popular in re-
cent years, with methods like Stacked Autoencoders Autoencoder (AE), Variational Autoen-
coders and Generative Adversarial Networks Generative Adversarial

Network (GAN)
greatly improving the state-of-

the-art. Other methods rely on augmenting classical models (such as the
One-Class Support Vector Machine One-Class Support Vector

Machine (OC-SVM)
), by learning an appropriate kernel func-

tion using Neural Networks. Recent developments in representation learn-
ing by self-supervision Neural Network (NN)are proving to be very beneficial in the context of
anomaly detection. Inspired by the advancements in anomaly detection us-
ing self-supervised learning Self-Supervised Learning

(SSL)
in the field of computer vision, this thesis aims

at developing a method for detecting anomalies by exploiting “pretext tasks”
tailored for text corpora Computer Vision (CV). This approach greatly improves the state-of-the-art
on two datasets - 20Newsgroups and AG News, for both semi-supervised
and unsupervised anomaly detection, thus proving the potential Natural Language

Processing (NLP)
for self-

supervised anomaly detectors in the field of natural language processing.
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The truth is rarely pure and never simple. — Oscar Wilde
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1 P R O LO G U E

1.1 introduction

anomaly detection is the task of detecting data points that are deviating
from the expected data distribution (inliers). Such a data point inlier, anomaly, outlier,

abnormality, deviant
is said to be

an outlier, abnormality, or deviant. Hawkins (D. M. Hawkins, 1980) notably
defined an anomaly as follows:

“An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanism.”

The early work on anomaly detection was historically produced in the
statistics community, but the rapid growth of available data banks and the
development of computer hardware and software solutions has led to in-
creasing amounts of interest from Data Scientists and the broader Computer
Science community.

The interest of researchers in outliers span several decades (Aggarwal and
Reddy, 2014; Chandola et al., 2009; Knorr and Ng, 1997), some of the first
formal mentions about "discordant observations" discordantgoing back to the 19th cen-
tury (Edgeworth, 1887). Efforts for developing Anomaly Detection meth-
ods have proven very fruitful, with applications in credit card fraud detec-
tion (Dorronsoro et al., 1997), network monitoring (B. Radford et al., 2018;
Sharafaldin et al., 2018), intrusion detection systems (Banoth et al., 2017),
time series (Braei and Wagner, 2020), medical imaging (Wei et al., 2018), and
manufacturing (Kammerer et al., 2019).

Most anomaly detection systems are usually producing an anomaly score
anomaly scorefor a given data sample. Such a score is a very general form of output and

can be used to asset the “abnormality degree” of the sample (see Fig. 1).
Such a scoring method is desirable since an anomaly highly depends on the
intended use-case and the tolerance to false-positives that the system should
have. For example, we would not want an automatic fraud detector used
in a banking system to flag unusual (but otherwise benign) transactions as
being fraudulent. Having a granular scoring scheme enables us to possibly
forward such a transaction to further evaluation by some human in the loop.

Normal Data Noisy Data Outliers

weak or strong anomalies

Figure 1: The anomaly spectrum. Noisy data can be regarded as “weakly” anoma-
lous. (figure adapted from: Aggarwal and Reddy, 2014)
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2 prologue

1.2 contribution

In this thesis, we present various architectures for anomaly detection in text.
Particularly, we introduce a novel deep learning method based on the Trans-
former architecture, called DATETransformer, DATE (Manolache et al., 2021). To our knowledge,
DATE is the first end-to-end deep anomaly detection method on text that is
using self-supervision to produce an anomaly score. Our contributions are
summarized below:

• We introduce a sequence-level self-supervision task called Replaced Mask
DetectionReplaced Mask Detection

(RMD), Replaced Token
Detection (RTD)

that, when used in conjunction with the Replaced Token De-
tection task (Clark, Luong, Q. V. Le, et al., 2020), improves the anomaly
detection capabilities of our model and stabilizes the training. RMD is
used to distinguish between text that is corrupted in different ways.

• We formulate an efficient Pseudo LabelPseudo Label (PL) score for text anomalies. We
remove the need of doing inference on text corrupted in multiple ways
(S. Wang et al., 2019) by looking at the individual tokens probabilities.
The token-level PL score significantly speeds up inference times and
makes the results interpretable.

• We outperform existing state-of-the-art semi-supervised text AD mod-
els on two datasets: 20Newsgroups (+4.7% AUROC) and AG News
(+6.9% AUROC). More so, when doing experiments in the unsuper-
vised AD settings, DATE surpasses all other methods trained with 0%
contamination, even at 10% train data contamination rate.

• We prove that anomaly detectors in text can be used for authorship
detection by training the models on the individual authors’ text corpus
and treating other texts as anomalies.

1.3 outline

The rest of this thesis is organized as follows:
Chapter 2 introduces notions about representation learningrepresentation learning , with an em-

phasis on deep self-supervised learningself-supervised learning for text. We briefly discuss about
models that are able to produce neural word embeddingsword embedding , then we focus
on some neural architectures that can be used to deal with sequential data.
We study two particular neural language models based on the Transformer

Transformer (Vaswani et al., 2017) architecture.
In Chapter 3 we introduce the problem of anomaly detection, which is the

main concern of this thesis. We present some classical models and the recent
advancements that are using deep neural networks.

We finally introduce our solution for detecting anomalies in text using
deep learning in Chapter 4. We describe how we exploit our “pretext task”

pretext tasks to do training and inference, then we go in detail about our experimental
setup, quantitative and qualitative results, and a rigorous ablation study.
We also showcase an application for anomaly detection in text, in the form
of authorship detection in the supplementary material B.2.



2 R E P R E S E N TAT I O N L E A R N I N G

neural networks have recently seen great popularity, mainly due to the
fact that AI systems based on neural networks are able to learn from massive
amounts of data, given enough compute power. The development of GPU
acceleration techniques (Chellapilla et al., 2006) and dedicated hardware ac-
celerators (Jouppi et al., 2017) has enabled researchers and practitioners to
train neural networks that can achieve human-level or even super-human
performance on various tasks (Badia et al., 2020; Cireşan et al., 2012). The
popularity of supervised deep learning approaches has escalated after the
2012 edition of the ImageNet Large Scale Visual Recognition Challenge (Rus-
sakovsky et al., 2015), where Alex Krizhevsky has obtained a top-5 error of
15.3% with AlexNet, a convolutional neural network Convolutional Neural

Network (CNN)
(Fukushima, 1980; Le-

Cun, B. Boser, J. Denker, et al., 1990; LeCun, B. Boser, J. S. Denker, et al.,
1989; Waibel et al., 1989). This approach brought an improvement of 41.4%
over the next best solution (Krizhevsky et al., 2012), and was the start of
a complete shift in interest from manually constructed features to learned
features. The AlexNet architecture is shown in Fig. 2.

This renewed interest in deep neural networks has led to many different
architectures which greatly improved the state-of-the-art in computer vision
(He et al., 2016; Simonyan and Zisserman, 2014; Szegedy et al., 2015), natural
language processing (Cho et al., 2014b; Hochreiter and Schmidhuber, 1997;
Mikolov, K. Chen, et al., 2013; Vaswani et al., 2017), and deep reinforcement
learning (Berner et al., 2019; Mnih et al., 2013; Silver et al., 2016; Vinyals
et al., 2019).

Most of the architectures used in computer vision were trained via super-
vised learning supervised learning, where models are instructed to solve particular tasks. The
idea of transfer learning transfer learning(Caruana et al., 1995) by using some of the learned
weights and extracting representations representations, fine-tuningor fine-tuning the model quickly re-
emerged and is still widely used for training when limited amounts of data
are provided (Zhuang et al., 2020). In natural language processing, since
text is unstructured and varies in length, it was already very desirable to

Figure 2: The AlexNet CNN architecture. (figure from: Krizhevsky et al., 2012)
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4 representation learning

Figure 3: The training and fine-tuning procedures for the BERT Transformer-based
model. More details about Transformer models will be provided in sec-
tion 2.3. The BERT architecture will be detailed in subsection 2.3.1. (figure
from: Devlin et al., 2018)

learn general word representations which could be used in conjunction with
specialized models. This has led to the development of many techniques for
representation learning in NLP (Bojanowski et al., 2017; Mikolov, K. Chen,
et al., 2013; Pennington et al., 2014) culminating with deep languagedeep language models models
(Peters et al., 2018) based on the Transformer architecture (Brown et al., 2020;
Clark, Luong, Q. V. Le, et al., 2020; Devlin et al., 2018; Vaswani et al., 2017),
which are usually trained via self-supervisionself-supervision .

2.1 self-supervised learning

As previously mentioned, much of the recent progress in the field of ma-
chine learning is due to models trained to solve particular tasks in a super-
vised fashion. These models require large collections of (usually) expensive
labeled data. One way of alleviating the requisite of annotated data is by
transferring knowledge from models trained on immense labeled data banks.
This approach assumes that these kinds of data banks exist, which can lead
to domain-specific solutions or, at best, sub-optimal results. For instance, the
knowledge transfer from a 2D computer vision dataset to a 3D task can be
quite limited. Similarly, we can’t expect that the weights of a model trained
on pictures of cats and dogs to be sufficient for classifying medical images.
Moreover, the task of labeling everything in the world is impossible. These
limitations can make us wonder if there’s a more efficient way of learning
general representations. One way of tackling this problem is self-supervised
learning.

Self-supervised learning is a form of unsupervised learning where the
data provides the supervision (Zisserman, 2018). Generally, the self-supervised
approach is done by corrupting a part of the input and making the model
reconstruct some of the lost information. In this way, the model should be
able to learn the general structure of the data in an unsupervised way, thus
enabling us to use the learned representations for other downstream tasks

downstream task via transfer learning. The self-supervision task is sometimes referred to as
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Figure 4: Example of general pretext tasks for self-supervised learning. In natu-
ral language processing we could try to predict the next token, or some
masked tokens, from a sequence of tokens. In computer vision we can
build a model that reconstruct the missing parts of a corrupted image.
(figure from: LeCun, 2021)

a “pretext task”, and the loss function is usually called “proxy loss” proxy loss. By us-
ing self-supervised learning, the model obtains supervisory signals from the
structure of the data, therefore the reliance on labeled datasets is eliminated.

The field of natural language processing is the earliest success story of SSL.
By using huge amounts of unlabeled text, deep language models trained us-
ing self-supervision resulted in which many consider being “NLP’s ImageNet
moment”. These models are usually given an input phrase that has some of
its parts masked, and then they are assigned to complete the phrase. For
example, when given the text “The students are (blank) mathematics at the fac-
ulty of (blank)”, the model should be able to determine that the most likely
action for the students to do in this context is to learn and that the most
common faculty where one learns mathematics is the faculty of mathemat-
ics, thus one viable (but not unique) completion would be “The students are
learning mathematics at the faculty of mathematics”. As a result, these masked
language models Masked Language Model

(MLM)
learn to represent the contexts and the significance of the

words in different contexts (LeCun, 2021).
The development of SSL models is not limited to the field of NLP. Recent

models trained with self-supervision tasks in the field of computer vision
have obtained state-of-the-art results when fine-tuned to solve classification
tasks (T. Chen, Kornblith, Norouzi, et al., 2020; Grill et al., 2020). Further-
more, some models trained via self-supervision and fine-tuned on fractions
of the dataset are able to surpass their fully-supervised counterparts, even
when using just 10% labeled data (T. Chen, Kornblith, Swersky, et al., 2020).

But still, CV has not benefited from SSL to the same extent as NLP, in
part because in vision it’s more difficult to represent uncertainty due to the
domain in which we need to make predictions being virtually infinite. We
are able to fix a finite vocabulary and get a probability distribution over the
entire vocabulary for a masked word, but if given a picture of a book on
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a table, it’s practically impossible to get a distribution over all the possible
objects that may be on that table. As a result, SSL in vision is usually done
by predicting various transformations (such as rotations or translations) of
the input (S. Wang et al., 2019), agreeing upon various views of the same
object (Grill et al., 2020), or by using contrastive learningcontrastive learning (T. Chen, Kornblith,
Norouzi, et al., 2020).

In the next sections, we’ll focus on self-supervised learning for natural
language processing and we’ll discuss some of the more common models
and approaches.

2.2 word embeddings

Word embeddings are dense vectorial representations of words. A key pro-
priety of these embeddings is that the words that have similar semantic
meaning also tend to have similar encodings.

The idea of obtaining dense vectors from words using neural networks is
not new (Bengio et al., 2003), but the Collobert-Weston model (Collobert and
Weston, 2008) was one of the first successful attempts at learning general-
purpose word embeddings for multi-task learning. The authors describe a
convolutional neural network which is leveraging unlabeled data using a
language model that minimizes the following ranking-type loss:∑

s∈S

∑
w∈D

max(0, 1− f(s) + f(sw)) (1)

where S is the set of context windows of the text, D is the dictionary
of words, and f(·) is the neural network without the softmax1 layer, and1 The softmax function,

σ(z)i =
ezi∑K
j=1 e

zj

∀i ∈ {1, . . . ,K} and
z = (z1, . . . , zK) is an

activation function used
to normalize the output of
a network to a probability

distribution over the
predicted classes.

sw is a context window where the middle word has been replaced by a
random word w. In this way, the language model is trained to solve a binary
classification task: whether the word in the middle of the input is related to
the context or not.

This approach has led to improvements when sharing weights and jointly
training the LM along with supervised tasks such as part-of-speech tagging,
named entity recognition, chunking, and semantic role labeling. Furthermore, the
model produced high-quality word embeddings as a side-effect (Table 1).

Table 1: Qualitative result regarding the word embeddings produced by the
Collobert-Weston model. The queried words are followed by their index
in the dictionary and their nearest 8 neighbors. (table from: Collobert and
Weston, 2008)
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Figure 5: The CBOW and Skip-Gram models. CBOW is predicting the word with
respect to the context, while Skip-Gram is predicting the context with
respect to the word. (figure from: Mikolov, Q. V. Le, et al., 2013)

The next great leap for word embeddings was brought by a class of tech-
niques called Word2Vec Word2Vec(Mikolov, K. Chen, et al., 2013; Mikolov, Sutskever,
et al., 2013; Mikolov, Q. V. Le, et al., 2013). This time, the models are specif-
ically trained to produce word embeddings, the quality of the embeddings
being measured with a word similarity task and compared to the previous
state-of-the-art. We’ll briefly examine two of the models from the Word2Vec
family: the Skip-Gram model and the Continuous Bag of Words Skip-Gram, Continuous Bag

of Words (CBOW)
(Fig. 5).

The Skip-gram model is using the Negative sampling objective to predict
the context of a word, on the other hand, CBOW’s objective is to Negative sampling (NEG)predict the
word in the middle of the context. One key advantage of these models is that
they require relatively low compute power, thus they can be trained on large
corpora. The authors note that Skip-gram delivers better performance on
small monolingual datasets, while CBOW is faster and benefits from large
amounts of data.

Given a middle token wt and a training context of k tokens, the Skip-gram
model tries to compute the probability of the neighbouring tokens as being
placed correctly. Formally, Skip-gram maximizes the following expression:

1

T

T∑
t=1

[

k∑
j=−k

logP(wt+j|wt)], (2)

P(wi|wj) is defined as:

P(wi|wj) =
e
uTwi

vwj∑|D|
ξ=1 e

uTξvwj
, (3)

where |D| is the cardinality of the dictionary, uw is the associated input
representation, and vw is the associated output representation.
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The procedure for CBOW is analogous, except for the fact that we’re now
trying to maximize the log probability logP(wt|wt−jt+j).

An interesting property of the learned vector representations is that linear
operations seem to be able to capture semantic meaning. For example, the
operation vector("King")− vector("Man")+ vector("Woman") yields a vec-
tor close to vector("Queen") (Mikolov, Yih, et al., 2013), and vector("France")−
vector("Paris") is close to vector("Italy") − vector("Rome") (Mikolov, Q. V.
Le, et al., 2013).

In the following years, other popular methods based on the Skip-Gram
and CBOW methods were developed, the most notable being GloVeGlobal Vectors (GloVe)

fastText
(Pennington

et al., 2014) and fastText (Bojanowski et al., 2017). GloVe builds on Word2Vec
by using global word statistics of the corpus during training, thus obtain-
ing state-of-the-art performance on the word analogy dataset and producing
vector spaces with meaningful sub-structure. The fastText method extends
Word2Vec by using n-gramsn-gram of characters instead of words. This approach
helps to capture the significance of shorter words, suffixes, prefixes, and rare
words.

2.3 transformers

Word embedding models are great tools for obtaining token-level semantic
vectors, but they offer little contextual information. It can be argued that
an abstract representation of a phrase can be obtained by applying an op-
eration (such as addition) to all the extracted vectors (Mikolov, Sutskever,
et al., 2013), but this is not a direct inductive biasinductive bias of the model, but a property
in the resulting vector space. Also, by doing something like summing all of
the vectors in order to obtain a sequence representation, we lose information
such as the order of the tokens. For tasks where sequentiality is important,
as is the case in machine translation, this kind of information loss is not
acceptable. A more expressive contextual embeddingcontextual embedding is desirable. This contex-
tual embedding should be able to represent an entire sequence of words or
the contextual meaning of a word in a sequence, with respect to the other
words and their order.

The modelling of sequential data was usually done using 1-dimensional
Convolutional Neural Networks or Recurrent Neural NetworksRecurrent Neural Network

(RNN)
and the gated

variants of the latter, such as the Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Units (Cho et al., 2014a) modelsLong Short-Term Memory

(LSTM), Gated Recurrent
Unit (GRU)

.
The problem with CNNs is that they have a limited context window, and
some locality information is lost by applying operations such as pooling.
RNNs, on the other hand, are able to encode a longer succession of to-
kens, but are notoriously hard to parallelize and can become very memory-
expensive when training on long examples. Various tricks (Kuchaiev and
Ginsburg, 2017; Shazeer et al., 2017) can help alleviate these issues, but the
fundamental architectural constraints remain.

A model that is able to circumvent these limitations is the Transformer
(Vaswani et al., 2017). Transformer networks are relinquishing recurrence in
favour of the self-attention mechanismself-attention to draw global dependencies between
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Figure 6: The original Transformer encoder-decoder architecture used for machine
translation. The encoder layer has two sub-layers: a multi-head self-
attention layer, and a fully-connected layer. One decoder layer contains
two multi-head self-attention layers and a fully-connected layer. (figure
from: Vaswani et al., 2017; Weng, 2018)

the input and the output. This approach enables much more parallelization,
leading to much larger scale language models.

The Transformer has an encoder-decoder structure, therefore it is able to
map a sequence x = (x1, . . . , xn) of symbols to a continuous representation
z = (z1, . . . , zn) which can be used in an auto-regressive auto-regressiveway to compute an
output sequence of symbols y = (y1, . . . yn). This encoder-decoder structure
is constructed using just stacked self-attention and fully-connected layers, for
both the encoder and the decoder, as can be seen in Fig. 6.

The key component in the Transformer architecture is the multi-head self-
attention mechanism. Self-attention is used to calculate a weighted average
of the sequence representations, which are encoded into a key-value-query

key, value, query (K, V, Q)pair. The values of the (K, V, Q) pair are obtained by linearly projecting
the word embeddings using a dot product between them and some learned
weights (linear projection). A dot product between the query and the keys
is then computed. The final weighted average is obtained by performing
another dot product with the values matrix:

Attention(Q,K,V) = softmax(
QKT√
dk

)V (4)

where dk is the dimension of the queries and keys. The scaling factor
1

sqrt(dk)
is used to prevent having large magnitude dot products, which

could “push the softmax functions into regions with extremely small gradients”2. 2 From Vaswani et al.,
2017: “To illustrate why the
dot products get large,
assume that the components
of q and k are independent
random variables with mean
0 and variance 1. Then their
dot product,
d× k =

∑dk
i=1 qiki, has

mean 0 and variance dk”

This operation is done in parallel using multiple heads, each head con-
taining parameters for different linear projection matrices, thus allowing the
model to process the information from different linear subspaces, resulting
in more expressiveness. The final output is the following:

MultiHead(X) = Concat(head1, . . . ,headn)WO (5)
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where headi = Attention(XW
Q
i ,XWK

i ,XWV
i ) and X ∈ Rbatch×tokens×dim

is the input, WQ
i ,WK

i ,WV
i ∈ Rdmodel×dv are the learnable linear projection

matrices, and WO ∈ Rhdv×dmodel is another learnable linear projection ma-
trix.

The output from the self-attention block can be then forwarded to a fully-
connected network that’s using a ReLUReLU(x) = max(0, x) activation function:

FFN(x) = max(0, xW1 + b1)W2 + b2. (6)

The original Transformer model obtained state-of-the-art performances on
multiple machine translation benchmarks while requiring fewer FLOPs to
train than its counterparts. Models based on the Transformer architecture be-
came very popular in natural language processing, especially when trained
using self-supervised language modelling tasks, with the intention of be-
ing later fine-tuned for downstream tasks. Recently, Transformers have also
been successfully used in computer vision (Caron et al., 2021; M. Chen et al.,
2020; Dosovitskiy et al., 2020), and many various augmentations to the archi-
tecture have been proposed (Beltagy, Peters, et al., 2020; Kitaev et al., 2020;
Xiong et al., 2021).

The reader should be aware that recent work in computer vision (Tol-
stikhin et al., 2021) suggests that self-attention is not needed and that one
can design entirely fully-connected networks with similar performance to
that of Transformers. However, this does not imply that self-attention and
the Transformer are redundant, but merely that it’s useful to also explore
other inductive biases (Wolpert and Macready, 1997).

2.3.1 BERT

As mentioned in the previous subsection, a prevalent technique is to train
large language models based on the Transformer and then use the language
model for a specific (usually supervised) downstream task, by either extract-
ing the representations or by fine-tuning the model on the new task.

One of the more successful models for accomplishing this is BERTBidirectional Encoder
Representations from
Transformers (BERT)

. The
authors argue that a key difference between BERT and previous techniques
(Peters et al., 2018; A. Radford and Narasimhan, 2018) is that the former
“restrict the power of the pre-trained representations” mainly because they are
unidirectional language models, therefore limiting the attention to look only
at the previous tokens during the pre-training phase, which could lead to
sub-optimal results for sentence-level tasks.

Table 2: BERT scores on the GLUE test set. (table from: Devlin et al., 2018)
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BERT proposes two different tasks for pre-training: the masked language
modelling task, which is inspired by the Cloze task (Taylor, 1953), and the
next sentence prediction next sentence prediction

(NSP)
task. The MLM task consists of randomly masking

parts of the input and predicting the masked input with respect to the un-
masked tokens. This allows for the self-attention mechanism to attend to
the entire context during training, unlike the classical unidirectional lan-
guage modeling task. The NSP task is a binary classification task for pre-
dicting whether the second sentence in a pair is a continuation of the first
one. NSP is justified by the fact that it could improve the performance on
various downstream tasks, such as question answering. However, further
empirical research shows that the NSP task does not significantly improve
downstream performance (Y. Liu et al., 2019). An illustration of the training
and fine-tuning procedures for BERT can be consulted at Fig. 3.

The architecture of BERT consists of a multi-layer bidirectional Transformer
encoder and the original model comes in two configurations: BERTBASE and
BERTLARGE. The first contains 12 layers with a hidden size of 768 and 12
attention heads, with a total of 110M parameters, while the former contains
24 layers with a hidden size of 1024 and 16 attention heads, totaling in 340M
parameters. BERT is able to improve the state-of-the-art on 11 NLP tasks,
including GLUE (Table 2) (A. Wang et al., 2018), SQuAD (Rajpurkar et al.,
2016), and SWAG (Zellers et al., 2018).

Many improvements and adaptations have been proposed over the origi-
nal BERT. Some address other languages (de Vries et al., 2019; Dumitrescu
et al., 2020; Martin et al., 2020), domain-specific solutions (Beltagy, Lo, et al.,
2019; Lee et al., 2019), or more efficient pre-training (Clark, Luong, Q. V. Le,
et al., 2020; Lan et al., 2019). We’ll next present one such BERT-based model
which leverages the idea of pre-training using two separate Transformers: a
discriminator and a generator.

2.3.2 ELECTRA

ELECTRA Efficiently Learning an
Encoder that Classifies Token
Replacements Accurately
(ELECTRA)

(Clark, Luong, Q. V. Le, et al., 2020) is a method of pre-training
by using a BERT-like generator and discriminator. The generator is trained
with the MLM objective, as in BERT, and generates plausible alternatives for
the masked tokens. The generated sequence is then fed to the discriminator
which classifies every token as being original or replaced - this task is called
replaced token detection (see Fig. 7, Fig. 15). The network is trained using
the following loss:

LELECTRA = LMLM + λLRTD (7)

where LMLM is the masked language modeling loss:

LMLM = E[
∑
i∈m

−logPG(xi|x̂(m); θG)], (8)

LRTD is the replaced token detection loss:

LRTD = E[

T∑
i=1

−logPD(mi|x̃(m); θD)], (9)
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Table 3: ELECTRA results on the GLUE dataset. (table from: Clark, Luong, Q. V.
Le, et al., 2020)

θG, θD are the generators’ and discriminators’ parameters, the set m is the
set of indices where the masking is applied, x̂(m) is the sequence without
the replaced tokens at positions m, x̃(m) is the sequence with the tokens
replaced at positions m, λ is a loss weighting hyperparameter, PG is the
vocabulary probability distribution for each token, and PD is the probability
that a token was replaced or not.

The generator is smaller than the discriminator, containing about 14 of the
discriminator parameters. The final model doesn’t have shared parameters,
except for the embedding layers. The reader should be aware of the fact
that, even if the objective is similar to the one of a generative adversarial net-
work, there are some key differences. First, the gradients from the discrim-
inator are not propagating to the generator, mainly because there’s a non-
differentiable sampling phase when generating the corrupted input. Second,
both the generator and the discriminator are trained using maximum likeli-
hood, the method is thus distinct from the usual “mini-max game” played
by the GAN discriminator and generator.

During training, 15% of the tokens are masked. After training, the gener-
ator is discarded and only the discriminator is used for downstream tasks.
Overall, this method greatly speeds up the training time. Furthermore, the
fine-tuned discriminator is obtaining similar or better performance on all of
the tasks (see Table 3).

A follow-up paper from the authors of ELECTRA explores the theoretical
soundness of the training procedure (Clark, Luong, Q. Le, et al., 2020). As
a result, an energy-based Cloze modelEnergy-Based Model (EBM) called Electric is developed, and it is
argued that ELECTRA is a special case of Electric. This work is outside the
scope of this thesis, but the author highly recommends that the interested
reader should study both ELECTRA and Electric.

Figure 7: ELECTRA training scheme. (figure from: Clark, Luong, Q. V. Le, et al.,
2020)



3 A N O M A LY D E T E C T I O N

many techniques were proposed to address the outlier detection prob-
lem. If labels are available, we can treat the anomaly detection problem as an
imbalanced supervised classification task and use common classification al-
gorithms. However, data imbalance must be addressed. This is usually done
by weighting the data or by adaptive resampling methods, such as SMOTE
(Bowyer et al., 2011). The scenarios that interest us are the semi-supervised
one, where we have access to clean data, and the unsupervised one, where
we assume that our training set contains a percentage of outliers.

Some of the classic methods are based on density estimation density estimation, one-class
learning, bayesian network,
ensemble method, dictionary
learning

(Breunig et al.,
2000; F. T. Liu et al., 2008; Rousseeuw and Driessen, 1999), one-class learning
(L. Manevitz and Yousef, 2001; L. M. Manevitz and Yousef, 2002; Tax and
Duin, 2004), Bayesian networks (Adams and MacKay, 2007; Cheeseman and
Stutz, 1996), ensemble methods (Aggarwal, 2013), or approaches based on
dictionary learning (Baltoiu et al., 2020; Irofti and Baltoiu, 2020).

Methods based on deep neural networks have become popular for AD
due to their superior performance and the availability of large amounts of
data. These methods usually involve learning the inlier class features using
autoencoders (J. Chen et al., 2017; S. Hawkins et al., 2002; Sakurada and
Yairi, 2014) or generative adversarial networks (Deecke et al., 2019; H. Wang
et al., 2019) and produce normality scores using the reconstruction error.

Recently, deep AD methods based on self-supervision have emerged in
the field of computer vision, obtaining better quantitative and qualitative
results. These approaches usually rely on training deep neural networks
to distinguish between various transformations applied to the input images
(Golan and El-Yaniv, 2018; S. Wang et al., 2019) and an anomaly score is
computed by aggregating model predictions across multiple transformed
input images. Such self-supervised approaches have also recently become
common when dealing with video data (Georgescu et al., 2020). In the text
domain, deep methods are more scarce and usually rely on pretrained word
embeddings (Hu et al., 2021; Ruff, Zemlyanskiy, et al., 2019).

In this chapter, we’ll first describe two powerful classical baselines: the Iso-
lation Forest (F. T. Liu et al., 2008) and the One-Class SVM (L. M. Manevitz
and Yousef, 2002), and then we’ll present two recent deep approaches - the
E3 Outlier E3 Outlier(S. Wang et al., 2019) framework, which enables the training of end-
to-end self-supervised anomaly detectors by predicting transformations ap-
plied to the original images, and the Context Vector Data Description Context Vector Data

Description (CVDD)
method,

which is using pretrained word embeddings and self-attention to produce
“context vectors”, which can be leveraged to produce anomaly scores for text
sequences based on the cosine similarity cosine similaritybetween the embeddings and the
context vectors.

13
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3.1 classical models

3.1.1 One-Class Support Vector Machine

Support Vector Machines (B. E. Boser et al., 1992) are a class of models used
to do binary classification. They achieve this by projecting the samples in a
high-dimensional (or infinite dimensional) space, where the data is linearly
separablelinearly separable , and choosing the decision boundary which has the maximum mar-
gindecision boundary, margin . The concept of margin is defined as being the smallest distance between
each sample and the decision boundary. Intuitively, this can be thought of
as finding the hyperplane that separates the data into two classes and has
the largest distance to all the nearest samples in the training data.

The One-Class SVM is a one-class classification technique based on the
SVM. The strategy is to project the data into another space and then separate
the data from the origin which has the maximum margin. By doing so, we
can attribute the outlier class to the samples which are closer to the origin of
the new space. Formally, let X be the initial feature space, and Φ : X→ F be
a transformation that maps points from X to a space F which is equipped
with a dot product that can be evaluated with a kernel function k : X2 → R

which has the form:

k(x,y) = (Φ(x) ·Φ(y)). (10)

To separate the data from the origin, we need to minimize the following
expression:

L =
1

2
||W||2 +

1

νN

N∑
i=1

max{b−W ·Φ(xi), 0}− b, (11)

where W is the coefficient vector, N is the number of samples in the training
set, 12 ||W||2 is a regularization term, b is the bias, max{b−W ·Φ(X), 0} is the
so-called slack penaltyslack penalty , and ν is the term that regulates the trade-off between
false positives and false negativesfalse positive, false negative . The term ν can be also be thought as being
a “prior probability that a data point in the training set is an outlier” (Aggarwal,
2015).

A direct solution for the optimization problem is difficult to obtain due to
the usage of Φ(·), the projection function. Moreover, Φ(·) is often not used
directly when training SVMs, the transformation being implicitly done via
the kernel function k(·, ·). One solution to this is by solving a dual representa-
tiondual problem, kernel trick of the maximum margin problem, and using the kernel trick within the
dual formulation.

The dual problem is a constrained optimization problem and is outside
the scope of this thesis. The reader should refer to Chapter 7.1 of Christoper
Bishop’s excellent book (Bishop, 2006) for a more elaborate discussion re-
garding the optimization of SVMs. For the particular case of optimizing the
OC-SVM, one can also refer to Chapter 3.4 of Charu C. Aggarwal’s book
(Aggarwal, 2015) on outlier detection.
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Figure 8: A solution to the OC-SVM optimization problem. Points on the left side
of the hyperplane are classified as outliers, while points from on the right
side are inliers. Outliers are penalized with penalty = b −W ·Φ(Xi).
Inlier points are not penalized. (figure adapted from: Aggarwal, 2015)

After training, an anomaly score can be obtained by computing:

Score(x) =

N∑
i=1

αi · k(x, xi) − b, (12)

where αi is a Lagrangian parameter corresponding to the slack variables
from the dual form.

A model that is closely related to the OC-SVM is the Support Vector Data
Description (Tax and Duin, 2004) Support Vector Data

Description (SVDD)
. The SVDD is an SVM that finds a hyper-

sphere of radius R in which the inliers are enclosed (as shown in Fig. 9). This
differs from the standard OC-SVM approach where a linear separator from
the origin is found. The SVDD can be seen as a special case of the OC-SVM
when using the Radial Basis Function Radial Basis Function (RBF)

k(x,y) = e−
||x−y||2

2σ2

kernel, which embeds the points on an
unit sphere. Nonetheless, the two methods usually produce different solu-
tions, and empirical evidence (Emmott et al., 2013) suggests that the SVDD
has a slight advantage over the OC-SVM using the RBF kernel.

R

Outliers Inliers

Figure 9: A SVDD solution. Inliers are inside the hypersphere of radius R, while
outliers are outside of it.
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3.1.2 Isolation Forest

Instead of learning how the data distribution of inliers looks like, the Isolation
Forest (F. T. Liu et al., 2008)Isolation Forest (iForest) is identifying anomalous entries by isolating
them into nodes and calculating an anomaly score based on the distance of
the nodes from the root.

The Isolation Forest is built using an ensemble of Isolation TreesIsolation Tree (iTree) , which
are an unsupervised formulation of Decision TreesDecision Tree (DT) . The iForest assumes that
anomalies are a minority in the dataset which have attributes that greatly
differ from the inlier class. iTrees are exploiting these properties of anoma-
lies by recursively partitioning randomly selected attributes of the data with
random cuts that are parallel to the axis. This has the effect of isolating
outliers in shallow tree branches due to the points being located in sparse
neighborhoods and thus making them more susceptible to isolation. The
final decision is made by averaging the distances from the leaves to the root
of the tree in different trees of the iForest.

The recursive partitioning done by an iTree is performed in the following
way: given a sample of n d-dimensional data points X = {x1, . . . , xn}, we
consider X as being the root node. We now divide X by randomly picking
an attribute i and a random cutoff point c ∈ [imin, imax], where imin and
imax are the minimum and maximum values for attribute i. This gives us
two subsets X6 = {x ∈ X|x(i) 6 c}, and X> = {x ∈ X|x(i) > c}. The two
subsets represent the leaves of the initial node. We repeat this procedure
recursively for every new node until either: (i) the tree reaches a height limit
that was set priorly, (ii) the new subsets have exactly one element, or (iii)
the new subsets contain the same value. A toy example of this procedure is
shown in Figure 10.

The average path length of an unsuccessful search in a Binary Search Tree33 the Isolation Tree is a
Binary Search Tree is c(n) = 2H(n− 1) − (2(n− 1)/2), where n is the number of external nodes,

and H(n) ≈ ln(n) + e is the harmonic number. The anomaly score for data
point x is defined as:

Score(x,n) = 2−
1
nt

∑nt
i=1

h(x)

c(n) , (13)

STEP 1

RANDOM CUTOFF

STEP 2

STEP 3

STEP 4

Figure 10: Isolation Tree partitioning process. The first data point is isolated at step
2 (higher anomaly score). All the points are isolated at the end of the
recursive partitioning.
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where nt is the number of iTrees in the Isolation Forest and h(x) is the path
length of a point measured by the number of edges that need to be traversed
from the root to the point’s corresponding node in the iTree.

The authors suggest that the following decisions can be made depending
on the value of Score:

• if s(x,n) is close to 1, then x is an anomaly.

• if s(x,n) is less than 0.5, then x can be regarded as an inlier.

• if ∀x ∈ X we have s(x,n) ≈ 0.5, then we are unable to tell if X contains
anomalies.

3.2 deep models

3.2.1 E3 Outlier

Some of the first artificial neural networks designed to tackle the anomaly
detection problem were the “replicator networks” (S. Hawkins et al., 2002).
The replicator network is an autoencoder trained to reconstruct the input
data. The reconstruction error is then used to produce an anomaly score.
Many recent deep AD methods rely on various autoencoder architectures
(Xia et al., 2015; Zhou and Paffenroth, 2017), but these kinds of networks
suffer from the fact that autoencoders are generally not good at representa-
tion learning when compared to discriminative DNN architectures, such as
ResNet (He et al., 2016). This begs the question if discriminative networks
could somehow be trained in an end-to-end fashion to do Outlier Detection.

The E3 (Effective End-to-End) Outlier (S. Wang et al., 2019) is a neural
network training and unsupervised anomaly detection framework for com-
puter vision. Outlier detection is achieved by training the models via self-
supervision4 with the task of discriminating between various transforma- 4 In the original paper, the

terms used are surrogate
supervision and surrogate
supervision based
discriminative network
(SSD).

tions or combinations of transformations that are applied to the input data.
An anomaly score is then calculated based on the model’s predictions on
multiple transformations or by using extracted representations in conjunc-
tion with other AD methods (such as the iForest).

Figure 11: a) E3 Outlier self-supervision training schema. b) A performance com-
parison between representations extracted from the self-supervised dis-
criminative network (SSD) and a convolutional autoencoder (CAE).
(figure from: S. Wang et al., 2019)
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The proposed self-supervision task can be defined in the following way:
construct a set O = {O(·|y)}ky=1 of K transformations that can be applied to
the input images and label them with a label y. We can generate a new
“pseudo-labeled” data point x(y) from an entry x by applying the trans-
formation O(·|y) ∈ O. Now we can train a SSD model which has a K-
dimensional softmax layer in a self-supervised fashion by feeding it x(y),
calculating the loss using cross entropy5, backpropagating, and updating the5 CE(ŷ,y) =

− 1K
∑K
i=1 yi · log(ŷi) neural network weights, as we would do with any supervised neural net-

work. Please note that this technique requires no manually labeled data and
that the “pseudo-label” is created at the moment in which we pick the trans-
formation which we want to apply. We are not using any prior knowledge
about the dataset itself.

The following sets of transformations are used:

1. Rotations: the images are rotated clock-wisely by a certain degree.

2. Flip: the images are flipped or not.

3. Shifting: some pixels of the images are shifted along the x or y axis.

4. Jigsaw: the images are partitioned into several equally-sized patches
and then the patches are permuted.

Based on these sets, we can define the “regular affine transformations”
subset ORA, the “irregular affine transformations” subset OIA, and the “patch
re-arranging set” OPR. These subsets can contain combinations of trans-
formations, which have their own class. The final operation set used is
ORA

⋃
OIA

⋃
OPR and consists of 111 transformations.

After the learning process, the learned representations can be used to train
other anomaly detectors (as suggested in figure 11b). Another method of ob-
taining an anomaly score is by directly utilizing the output from the softmax
layer. Indeed, this approach produces better results when compared to the
former.

To extract an anomaly score for an image x, we apply to every transfor-
mation O(·|y) in from the set O, therefore obtaining a set of K transformed
images {x(1)...x

K
} and their pseudo-labels. The transformed images are then

fed through the network, producing a set of K logits {P(x(y)|Θ)}, where Θ
are the parameters of the network. Now we can apply one of the proposed
scores:

1. Pseudo Label (PL): an anomaly score is obtained by averaging the prob-
abilities of the correct class from the obtained logits, i.e.:

PL(x) =
1

K

K∑
y=1

P(y)(x(y)|Θ). (14)

2. Maximum Probability (MP): A issue with the PL score is that the
classes obtained by applying the transformations could not be suffi-
ciently separable. For example when we flip the number “8” we’re still
getting the number “8”. This can make our models unable to detect
the correct transformation and can hurt our anomaly score. One way
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to solve this issue is to take the maximum probability from the logits
for every transformation:

MP(x) =
1

K

K∑
y=1

max
t

P(t)(x(y)|Θ). (15)

3. Negative Entropy (NE): The previous two scores are using information
from a single classes’ probability, ignoring the other (K − 1) classes.
One assumption that we can make is that, when given an anomaly,
the neural network will be unable to decide what transformation was
applied, thus producing an uninformative probability distribution that
has high entropy, as seen in Fig. 12. Under this assumption, we can
use the entropy to produce an anomaly score in the following way:

NE(x) = −
1

K

K∑
y=1

H(P(x(y)|Θ)) =
1

K

K∑
y=1

K∑
t=1

P(t)(x(y)|Θ)log(P(t)(x(y)|Θ)).

(16)

In practice, the Negative Entropy score gives the best results.

The authors are training multiple discriminative DNN models such as
ResNet, Wide ResNet (Zagoruyko and Komodakis, 2016), and DenseNet
(Huang et al., 2017), but the method can be applied to any neural network
that can be trained on image data. The datasets used are MNIST (LeCun and
Cortes, 2010), Fashion MNIST (Xiao et al., 2017), CIFAR10, SVHN (Netzer
et al., 2011), and CIFAR100 (Krizhevsky, 2012). The semi-supervised outlier
detection setup is the following: given a dataset, consider that one class with
one semantic concept (e.g. “car”, “human”) is the inlier class and use it as
training data. For outliers, sample a percentage of the images from every
other class. For the fully unsupervised scenario, simply add a percentage of
outliers in the training dataset.

The models trained in the E3 Outlier manner are greatly outperforming
the competition, usually improving the AUROC and AUPR Area Under the Receiver

Operating Characteristic
Curve (AUROC), Area
Under the Precision-Recall
Curve (AUPR)

scores by 5% −

30% in both semi-supervised and unsupervised scenarios, as can be seen in
Table 4 and Fig. 13.
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Figure 12: a) Low entropy “spikey” distribution. b) High entropy “flat” distribu-
tion. A high entropy gives a higher anomaly score.
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Table 4: AUROC/AUPR-inlier/AUPR-outlier (%) scores for unsupervised outlier
detection. Bold represents the best scores. ρ is the training set contamina-
tion rate. CAE: Convolutional autoencoder. CAE-IF: CAE+iForest. DRAE:
Discriminative reconstruction based autoencoder. RDAE: Robust deep au-
toencoder. DAGMM: Deep autoencoding gaussian mixture model (table
from: S. Wang et al., 2019)

Figure 13: Unsupervised outlier detection comparison for various rates of contami-
nation. (figure from: S. Wang et al., 2019)

3.2.2 Context Vector Data Description

While many anomaly detection solutions using deep neural networks were
specifically designed for computer vision, only a few have been proposed for
natural language processing. One method for detecting anomalies in text is
the Context Vector Data Description (Ruff, Zemlyanskiy, et al., 2019), which
leverages pretrained word embeddings in order to construct “context vectors”

context vector using the self-attention mechanism. These context vectors can capture se-
mantic contexts and can be used to perform contextual anomaly detection
with respect to the themes and concepts which are encoded in the learned
context vectors.

The CVDD method is using a slightly different multi-head self-attention
mechanism than the one presented in (Vaswani et al., 2017). For a given
sentence S = (w1, . . . ,wl), we can extract a matrix H = (h1, ·,hl) ∈ Rp×l

containing the corresponding word embeddings, extracted with some uni-
versal word embedding models (e.g. Word2Vec, FastText, GloVe), or by some
language model (e.g. BERT, ELECTRA). Now, by using the multi-head self-
attention mechanism, we can obtain a single fixed-size representation from
our matrix H. First, we compute the attention matrix A in the following way:
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A = softmax(tanh(HTW1)W2), (17)

where W1 ∈ Rp×da and W2 ∈ Rda×r are learnable weight matrices, and da
is the model dimension. The tahn6 activation function is applied element- 6 tanh(x) = ex−e−x

ex+e−x

wise while the softmax activation is applied column-wise. By doing this
we obtain an attention matrix A = (a1, . . . ,ar) containing r attention heads.
Now, a sentence embedding matrix M = (m1, . . . ,mr) ∈ Rp×r can be calcu-
lated using the self-attention matrix:

M = HA. (18)

The context vectors can now be constructed as follows: let r be the number
of attention heads and C = (c1, . . . , cr) ∈ Rp×r a matrix containing r vectors.
We say that C is the context matrix and c1, . . . , cr are the context vectors. The
Context Vector Data Description loss is defined in the following way:

min
C,W1,W2

1

n

n∑
i=1

r∑
k=1

σk(H
(i))d(ck,m(i)

k ) + ||CTC− I||2F, (19)

where d(ck,m(i)
k ) is the cosine distance between the context vector ck and

the data representation m(i)
k , I is the r× r identity matrix, || · ||F is the Frobe-

nius norm, and σ1(H), . . . ,σr(H) are the input-dependent weights which
are passed through a parametrized softmax function7. Note that there are as 7 σk(H) =

e−αd(ck ,mk(H))∑r
j=1 e

−αd(cj ,mj(H))many context vectors as attention heads, thus constraining the network to

Figure 14: Qualitative results on the IMDB Movie Reviews dataset. a) The most
anomalous entries in the test set. b) Words that are clustering around
the context vectors - the first and second context vectors seem to model
positive and negative sentiments, while the third one models cinematic
language. c) Top most normal entries in the test set. Most abnormal
words are in a more intense red. (figure from: Ruff, Zemlyanskiy, et al.,
2019)
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Table 5: Semi-supervised outlier detection scores (AUROC %) on the Reuters and
20 Newsgroups datasets. The c∗ context vector is hand-picked and pro-
duces the best scores, thus making it dependent on the ground truth. (table
from: Ruff, Zemlyanskiy, et al., 2019)

learn attention weights which are able to extract the most common themes
and concepts from the given corpora. The ||CTC− I||2F regularization term is
also used to promote diverse context vectors, by encouraging orthogonality.
The network is trained using gradient descent, with respect to the weights
W1,W2, and the context matrix C.

After training, an anomaly detection score can be calculated for a sample
S with an embedding H by averaging the contextual anomaly scores:

Score(H) =
1

r

r∑
k=1

d(ck,mk(H)). (20)

Quantitative and qualitative experiments are performed on 20Newsgroups
(Lang and Rennie, 1999), Reuters-21578 (Lewis, 1999) (See Table 5 and Table
6), and IMDB Movie Reviews (Maas et al., 2011) datasets (See Fig. 14). The
official train/test split is used. One class is considered as being inliers, while
the rest are considered outliers.

The word embeddings used are GloVe and fastText. On every dataset,
the text is stripped of punctuation, numbers, redundant whitespaces, and
stopwords. The text is also converted to lowercase and the only words that
are considered are the words with more than three characters.

Table 6: Top words per context on the 20 Newsgroups comp, pol, and rel subsets
with 3 context vectors. (table from: Ruff, Zemlyanskiy, et al., 2019)
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as announced , in this chapter we shall introduce our solution to the
problem of detecting anomalies in text using deep learning. Our method is
called DATE (which is short for Detecting Anomalies in Text using ELECTRA)
(Manolache et al., 2021). Our solution is an end-to-end AD method relying
on self-supervision in order to produce an anomaly score. We will first con-
cern ourselves with the RMD and RTD self-supervision tasks which were
also described in the Prologue chapter of the thesis.

4.1 pretext tasks

The discriminative task called RMD has the purpose of creating training
data by altering a given text using one out of K given operations and it also
asks to ascertain which one of the operations is the correct one given the
transformed text. The modification of the text is obtained by following the
next steps:

1. masking some of the input words using a predefined mask pattern;

2. replacing the masked words with alternative ones8. 8 For example frog with
animal

We shall now proceed to describe our method more formally. To this
end, let m ∈ {0, 1}T be a mask pattern corresponding to the text input x =

[x1, . . . , xT ]. For training, we generate and fix Kmask patterns m(1), . . . ,m(K)

by randomly sampling a constant number of 1 ′s out of the T available ones.
Unlike ELCTRA which masks random tokens spontaneously, our model first
samples a mask model from the K predefined ones. We then proceed to mask
our input with m and obtain the vector x̂(m) := [x̂1, . . . , x̂T ], where

x̂i =

xi, mi = 0

[MASK], mi = 1

or simply x̂i = xi(1 −mi) + [MASK]mi. For instance, given an input x =

[they, were, ready, to, go] and a mask pattern m = [0, 0, 1, 0, 1], the resulting
masked input will be x̂(m) = [they, were, [MASK], to, [MASK]].

Each of the masked tokens could then be replaced by a word token. A
naive way to do this is by sampling uniformly from the vocabulary. How-
ever, for more plausible alternatives, masked tokens can be sampled from a
Masked Language Model generator such as BERT, which outputs a proba-

23
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bility distribution PG over the vocabulary for each corrupted token. We will
denote the plausibly corrupted text by x̃(m) = [x̃1, . . . , x̃T ], where

x̃i =

xi, mi = 0

wi ∼ PG(xi|x̂(m); θG), mi = 1

For instance, for the masked input from before, a plausibly corrupted input
could be x̃(m) = [they, were, prepared, to, depart].

RTD is a binary sequence tagging task, where some tokens in the input are
corrupted with plausible alternatives, which is similar to how RMD works.
The key difference is that the discriminator must then predict for each token if
it’s the original token or a replaced one. Distinctly from RTD, which is a token-
level discriminative task, RMD is a sequence-level one. This means that the
model distinguishes between a fixed number of predefined transformations
applied to the input. As such, RMD can be seen as the text counterpart task
for the self-supervised classification of geometric alterations applied to im-
ages, as described in Subsec. 3.2.1. While RTD predictions could be used to
sequentially predict an entire mask pattern, they can lead to masks that are
not part of the predefined K patterns9. The RMD constraint overcomes this9 Suppose that we have

the input text “the cat is
purring” and the masking

pattern set
M = {[0, 1, 0, 1], [1, 0, 0, 1]}.

In this situation, we could
use the RTD head to

produce both available
masking patterns, but it
could also produce the

pattern [1, 1, 1, 1], which
does not exist in M.

behaviour. We thus train DATE to solve both tasks simultaneously, which
increases the AD performance compared to solving one task only, as shown
in Subsec. 4.2.2. Furthermore, we observed empirically that this approach
also improves training stability.

4.1.1 DATE Architecture

We propose simultaneously solving RMD and RTD by jointly training a gen-
erator, G, and a discriminator, D.

G is a MLM used to replace the masked tokens with plausible alternatives.
We also consider a setup with a random generator, in which we sample tokens
uniformly from the vocabulary. Indeed, this approach seems to work better
for our AD setup than a parameterized generator, as can be seen in the
ablation study at Subsec. 4.2.2. We suspect that this is happening because the
anomalies are a lot more different than the inliers, thus making the plausible
text generated by a parameterized generator look much like the inlier class,
ultimately confusing the discriminator.

D is a deep neural network with two prediction heads used to distinguish
between corrupted and original tokens (RTD) and to predict which mask pat-
tern was applied to the corrupted input (RMD). At test time, G is discarded,
and D’s probabilities are used to compute an anomaly score.

Both G and D models are based on a BERT encoder, which consists of
several stacked Transformer blocks. The BERT encoder transforms an input
token sequence x = [x1, x2, ..., xT ] into a sequence of contextualized word
embeddings h(x) = [h1,h2, ...,hT ].
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Generator (MLM or random)

Discriminator

Input Masking

[0, 0, 1, 0, 1]
[1, 1, 0, 0, 0]
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[0, 1, 0, 1, 0]
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Figure 15: DATE Training. Firstly, the input sequence is masked using a sam-
pled masked pattern and a generator fills in new tokens in place of the
masked ones. Secondly, the discriminator receives supervision signals
from two tasks: RMD (which mask pattern was applied to the input
sequence) and RTD (the per-token status: original or replaced). (figure
from: Manolache et al., 2021)

When parameterized, G is a BERT encoder with a linear layer on top that
outputs the probability distribution PG for each token. The generator is
trained using the MLM loss:

LMLM = E

[ T∑
i=1;

s.t.mi=1

− logPG(xi|x̂(m); θG)
]

(21)

D is a BERT encoder with two prediction heads applied over the contextu-
alized word representations:

1. RMD head. This head outputs a vector of logits for all mask patterns
o = [o1, ...,oK]. We use the contextualized hidden vector h[CLS] (cor-
responding to the [CLS] special token at the beginning of the input)
for computing the mask logits o and PM, the probability of each mask
pattern:

PM(m = m(k)| x̃(m(k)); θD) =
eok∑K
i=1 e

oi
(22)

2. RTD head. This head outputs scores for the two classes (original and re-
placed) for each token x1, x2, ..., xT , by using the contextualized hidden
vectors h1,h2, ...,hT .
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We train the DATE network in a maximum-likelihood fashion using the
LDATE loss:

min
θD,θG

∑
x∈X

LDATE(θD, θG; x) (23)

The loss contains both the token-level losses in ELECTRA, as well as the
sequence-level mask detection loss LRMD:

LDATE(θD, θG; x) = µLRMD(θD; x) +LMLM(θG; x) + λLRTD(θD; x), (24)

where the discriminator losses are:

LRMD = E

[
− log PM(m| x̃(m); θD)

]
, (25)

LRTD = E

[ T∑
i=1;

xi 6=[CLS]

− log PD(mi| x̃(m); θD)
]

, (26)

where PD is the probability distribution that a token was replaced or not.
The ELECTRA loss enables D to learn good feature representations for

language understanding. Our RMD loss puts the representation in a larger
sequence-level context. After pre-training, G is discarded and D can be used
as a general-purpose text encoder for downstream tasks. Output probabili-
ties from D are further used to compute an anomaly score for new examples.

4.1.2 Anomaly Detection score

We adapt the Pseudo Label (PL) based score from the E3Outlier frame-
work in a novel and efficient way. In its general form, the PL score ag-
gregates responses corresponding to multiple transformations of x. This

Discriminator

low PL 

PL = mean(      , ...,       )

    [CLS] indie movies  grow    in  popularityanomaly

anomalyPL = Pseudo Label score

Figure 16: DATE Testing. The input text sequence is fed to the discriminator, result-
ing in token-level probabilities for the normal class, which are further
aggregated into an anomaly score, as detailed in Sec.4.1.2. For deciding
whether a sample is either normal or abnormal, we aggregate over all of
its tokens. (figure from: Manolache et al., 2021)
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approach requires K input transformations over an input x and K forward
passes through a discriminator. It then takes the probability of the ground
truth transformation and averages it over all K transformations.

To compute PL for our RMD task, we take x to be our input text and the K
mask patterns as the possible transformations. We corrupt x with mask m(i)

and feed the resulted text to the discriminator. We take the probability of the
ith mask from the RMD head. We repeat this process K times and average
over the probabilities of the correct mask pattern. This formulation requires
K feed-forward steps through the DATE network, which slows down infer-
ence. We propose a more computationally efficient approach next.

Instead of aggregating sequence-level responses from multiple transforma-
tions over the input, we can aggregate token-level responses from a single
model over the input to compute an anomaly score. More specifically, we
can discard the generator and feed the original input text to the discrimina-
tor directly. We then use the probability of each token being original (not
corrupted) and then average over all the tokens in the sequence:

PLRTD(x) =
1

T

T∑
i=1

PD(mi = 0|x̃(m
(0)); θD), (27)

where m(0) = [0, 0, ..., 0] effectively leaves the input unchanged. As can be
seen in Fig. 16, the RTD head will be less certain in predicting the original
class for outliers (having a probability distribution unseen at training time),
which will lead to lower PL scores for outliers and higher PL scores for inliers.
We use PL at testing time, when the entire input is either normal or abnormal.
Our method also speeds up inference, since we only do one feed-forward
pass through the discriminator instead of k passes. Moreover, having a per
token anomaly score helps us better understand and visualize the behavior
of our model, as shown in Fig. 18b.

4.2 experimental analysis

In this section, we detail the empirical validation of our method by pre-
senting: the semi-supervised and unsupervised experimental setup, a com-
prehensive ablation study on DATE, and the comparison with state-of-the-
art on the semi-supervised and unsupervised AD tasks. DATE does not
use any form of pre-training or knowledge transfer (from other datasets or
tasks), learning all the embeddings from scratch. Using pre-training would
introduce unwanted prior knowledge about the outliers, making our model
considering them known (normal).

4.2.1 Experimental setup

We describe next the Anomaly Detection setup, the datasets and the imple-
mentation details of our model. The code is publicly available 10. 10 https://github.com/

bit-ml/dateWe use a semi-supervised setting in Sec. 4.2.2-4.2.3 and an unsupervised
one in Sec. 4.2.4. In the semi-supervised case, we successively treat one
class as normal (inliers) and all the other classes as abnormal (outliers). In

https://github.com/bit-ml/date
https://github.com/bit-ml/date
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the unsupervised AD setting, we add a fraction of outliers to the inliers
training set, thus contaminating it. We compute the Area Under the Receiver
Operating Curve (AUROC) for comparing our method with the previous
state-of-the-art. For a better understanding of our model’s performance in
an unbalanced dataset, we report the Area Under the Precision-Recall curve
(AUPR) for inliers and outliers per split in the supplementary material B.1.

We test our solution using two text classification datasets, after stripping
headers and other metadata. For the first dataset, 20Newsgroups, we keep
the exact setup, splits, and preprocessing (lowercase, removal of: punctu-
ation, number, stop words, and short words) as in (Ruff, Zemlyanskiy, et
al., 2019), ensuring a fair comparison with previous text anomaly detection
methods. As for the second dataset, we use a significantly larger one, AG
News, better suited for deep learning methods.

1. 20Newsgroups11: We only take the articles from six top-level classes:11 http://qwone.com/

~jason/20Newsgroups/ computer, recreation, science, miscellaneous, politics, religion, like in (Ruff,
Zemlyanskiy, et al., 2019). This dataset is relatively small, but a classic
for NLP tasks (for each class, there are between 577-2856 samples for
training and 382-1909 for validation).

2. AG News (Zhang et al., 2015): This topic classification corpus was
gathered from multiple news sources, for over more than one year 12.12

http://groups.di.unipi.

it/~gulli/AG_corpus_of_

news_articles.html

It contains four topics, each class with 30000 samples for training and
1900 for validation.

For training the DATE network we follow the pipeline in Fig. 15. In addi-
tion to the parameterized generator, we also consider a random generator, in
which we replace the masked tokens with samples from a uniform distribu-
tion over the vocabulary.

The discriminator is composed of four Transformer layers, with two predic-
tion heads on top (for RMD and RTD tasks). We provide more details about
the model in the supplementary material A.2. We train the networks with
AdamW with amsgrad (Loshchilov and Hutter, 2019), 1e−5 learning rate,
using sequences of maximum length 128 for AG News, and 498 for 20News-
groups. We use K = 50 predefined masks, covering 50% of the input for
AG News and K = 25, covering 25% for 20Newsgroups. The training con-
verges on average after 5000 update steps and the inference time is 0.005
sec/sample in PyTorch (Paszke et al., 2017), on a single GTX Titan X.

4.2.2 Ablation studies

To better understand the impact of different components in our model and
making the best decisions towards a higher performance, we perform an
extensive set of experiments (see Tab. 7). Note that we successively treat
each AG News split as inlier and report the mean and standard deviations
over the four splits. The results show that our model is robust to domain
shifts.
A. Anomaly score. We explore three anomaly scores introduced in the
E3Outlier framework (S. Wang et al., 2019) on semi-supervised and unsuper-
vised AD tasks in Computer Vision: Maximum Probability (MP), Negative

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Abl. Method Variation AUROC(%)

CVDD best 83.1 ± 4.4

OCSVM best 84.0 ± 5.0

ELECTRA adapted for AD 84.6 ± 4.5

DATE (Ours) 90.0 ± 4.2

A. Anomaly score MP 72.4 ± 3.7

NE 73.1 ± 3.9

B. Generator small 89.3 ± 4.2

large 89.8 ± 4.4

C. Loss function RTD only 89.4 ± 4.4

RMD only 85.9 ± 4.1

D. Masking 5 masks 87.5 ± 4.5

patterns 10 masks 89.2 ± 4.3

25 masks 89.8 ± 4.3

100 masks 89.8 ± 4.3

E. Mask percent 15% 89.5 ± 4.1

25% 89.5 ± 4.1

Table 7: Ablation study. We show results for the competition and report ablation
experiments which are only one change away from our best DATE config-
uration: A. PLRTD; B. Rand C. RTD + RMD; D. 50 masks; E. 50%. For the
ELECTRA line, we use: A. PLRTD; B. Rand; C. RTD only; D. Unlimited;
E. 15%. A. The Anomaly Score used over classification probabilities shows
that PLRTD (used in DATE) is the best in predicting anomalies, meaning
that our self-supervised classification task is well defined, with few am-
biguous samples; B. A learned Generator does not justify its training cost;
C. RMD Loss proved to be complementary with RTD Loss, their combina-
tion (in DATE) increasing the score and stabilizes the training; D+E. (table
from: Manolache et al., 2021)

Entropy (NE), and our modified Pseudo Label (PLRTD). These scores are
computed using the softmax probabilities from the final classification layer
of the discriminator. PL is an ideal score if the self-supervised task manages
to build and learn well separated classes. The way we formulate our mask
prediction task enables a very good class separation, as theoretically proved
in detail in the supplementary material A.1. Therefore, PLRTD proves to be
significantly better in detecting the anomalies compared with MP and NE
metrics, which try to compensate for ambiguous samples.

B. Generator performance. We tested the importance of having a learned
generator, by using a one-layer Transformer with hidden size 16 (small) or
64 (large). The random generator proved to be better than both parameterized
generators.
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Inlier
class

iForest
best

OC-SVM
best

CVDD
best

mSVDD
best

DATE
(Ours)

20
N

ew
s

comp 66.1 78.0 74.0 84.4 92.1

rec 59.4 70.0 60.6 77.7 83.4

sci 57.8 64.2 58.2 67.3 69.7

misc 62.4 62.1 75.7 76.2 86.0

pol 65.3 76.1 71.5 79.2 81.9

rel 71.4 78.9 78.1 83.6 86.1

A
G

N
ew

s business 79.6 79.9 84.0 - 90.0

sci 76.9 80.7 79.0 - 84.0

sports 84.7 92.4 89.9 - 95.9

world 73.2 83.2 79.6 - 90.1

Table 8: Semi-supervised performance (AUROC%). We test on the 20Newsgroups
and AG News datasets, by comparing DATE against several strong base-
lines and state-of-the-art solutions (with multiple variations, choosing the
best score per split as detailed in Sec. 4.2.3): iForest, OC-SVM, CVDD, and
mSVDD. We largely outperform competitors with an average improvement
of 4.7% on 20Newsgroups and 6.9% on AG News compared with the next
best solution. Note that DATE uses the same set of hyper-parameters per
dataset. (table adapted from: Manolache et al., 2021)

C. Loss function. For the final loss, we combined RTD (which sanctions the
prediction per token) with our RMD (which enforces the detection of the
mask applied on the entire sequence). We also train our model with RTD or
RMD only, obtaining weaker results. This proves that combining losses with
supervisions at different scales (locally: token-level and globally: sequence-
level) improves AD performance. Moreover, when using only the RTD loss,
the training can be very unstable (AUROC score peaks in the early stages,
followed by a steep decrease). With the combined loss, the AUROC is only
stationary or increases with time.
D. Masking patterns. The mask patterns are the root of our task formula-
tion, hiding a part of the input tokens and asking the discriminator to clas-
sify them. As experimentally shown, having more mask patterns is better,
encouraging increased expressiveness in the embeddings. Too many masks
on the other hand can make the task too difficult for the discriminator and
our ablation shows that having more masks does not add any benefit after
a point. We validate the percentage of masked tokens in E. Mask percent
ablation.

4.2.3 Comparison with other AD methods

We compare our method against classical AD baselines like Isolation For-
est (F. T. Liu et al., 2008) and existing state-of-the-art One Class SVM (L. M.
Manevitz and Yousef, 2002), CVDD (Ruff, Zemlyanskiy, et al., 2019), and
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mSVDD (Hu et al., 2021) We outperform all previously reported perfor-
mances on all 20Newsgroups splits by a large margin: 13.5% over the best
reported CVDD and 11.7% over the best OCSVM, and 4.7% over the best
mSVDD, as shown in Tab. 8. In contrast, DATE uses the same set of hyper-
parameters for a dataset, for all splits. For a proper comparison, we keep the
same experimental setup as the one introduced in (Ruff, Zemlyanskiy, et al.,
2019).

isolation forest. We apply it over fastText or GloVe embeddings, vary-
ing the number of estimators (64, 100, 128, 256), and choosing the best model
per split. In the unsupervised AD setup, we manually set the percent of
outliers in the train set.

ocsvm. We use the One-Class SVM model implemented in the CVDD
work. For each split, we choose the best configuration (fastText vs Glove, rbf
vs linear kernel, ν ∈ [0.05, 0.1, 0.2, 0.5]).

cvdd. For each split, we chose the best column out of all reported context
sizes (r). The scores reported using the c∗ context vector depends on the
ground truth and it only reveals “the potential of contextual anomaly detection”,
as the authors mention.

msvdd. This model (Hu et al., 2021) is the current state-of-the-art solution
for AD on text. For each split, we chose the best column out of all reported
configurations, excluding those which use negative supervision.

4.2.4 Unsupervised AD

We further analyse how our algorithm works in a fully unsupervised sce-
nario, namely when the training set contains some anomalous samples (which

Figure 17: Unsupervised AD. We test the performance of our method when train-
ing on impure data, which contains anomalies in various percentages:
0%-15%. The performance slowly decreases when we increase the
anomaly percentage, but even at 10% contamination, it is still better than
state-of-the-art results on self-supervised anomaly detection in text (Ruff,
Zemlyanskiy, et al., 2019), which trains on 0% anomalous data, proving
the robustness of our method. Experiments were done on all AG News
splits. (figure from: Manolache et al., 2021)



32 date

(a) Normalized histogram for anomaly score. We see
how the anomaly score (PL) distribution varies
among inliers and outliers, from the beginning of
the training (1st column) to the end (2nd column),
where the two become well separated, with rela-
tively low interference between classes. Note that
a better separation is correlated with high perfor-
mance (1st line split has 95.9% AUROC, while the
2nd has only 90.1%).

(b) Qualitative examples. Lower scores are shown in a more
intense red, and point to anomalies. In the 1st example,
words from politics are flagged as anomalous for sports. In
the 2nd one, words describing natural events are outliers for
technology. In the 3rd row, while few words have higher
anomaly potential for the business domain, most of them
are appropriate.

Figure 18: Qualitative results. a) Evolution of the anomaly scores on the sports and
sci test sets. b) Anomalous words for three different scenarios. (figures
from: Manolache et al., 2021)

we treat as normal ones). By definition, the quantity of anomalous events in
the training set is significantly lower than the normal ones. In this experi-
ment, we show how our algorithm performance is influenced by the percent-
age of anomalies in training data. Our method proves to be extremely robust,
surpassing state-of-the-art, which is a semi-supervised solution, trained over
a clean dataset (with 0% anomalies), even at 10% contamination, with +0.9%
in AUROC (see Fig. 17). By achieving outstanding performance in the un-
supervised setting, we make unsupervised AD in text competitive against
other semi-supervised methods. The reported scores are the mean over
all AG News splits. We compare against the same methods presented in
Sec. 4.2.3.

4.2.5 Qualitative results

We show in Fig. 18b how DATE performs in identifying anomalies in
several examples. Each token is colored based on its PL score.

We also show how our anomaly score (PL) is distributed among normal
vs abnormal samples. For visualization, we chose two splits from AG News
and report the scores from the beginning of the training to the end. We see
in Fig. 18a that, even though at the beginning, the outliers’ distribution of
scores fully overlaps with the inliers, at the end of training the two are well
separated, proving the effectiveness of our method.



5 C O N C L U S I O N A N D F U R T H E R
D E V E LO P M E N T S

We propose DATE, a model for tackling Anomaly Detection in Text, and
formulate an innovative self-supervised task, based on masking parts of the
initial input and predicting which mask pattern was used. After masking,
a generator reconstructs the initially masked tokens and the discriminator
predicts which mask was used. We optimize a loss composed of both token
and sequence-level parts, taking advantage of powerful supervision, coming
from two independent pathways, which stabilizes learning and improves
AD performance. For computing the anomaly score, we alleviate the burden
of aggregating predictions from multiple transformations by introducing an
efficient variant of the Pseudo Label score, which is applied per token, only
on the original input. We show that this score separates very well the abnor-
mal entries from normal ones, leading DATE to outperform state-of-the-art
results on all AD splits from 20Newsgroups and AG News datasets, by a
large margin, both in the semi-supervised and unsupervised AD settings.

We would like to further investigate and analyse other self-supervision
tasks for AD in text. In its current form, DATE is randomly masking to-
kens from the input sequence. It would be interesting to see how masking
specific parts of speech would affect the anomaly detection capabilities. An-
other intriguing approach to self-supervision is by contrastive learning (T.
Chen, Kornblith, Norouzi, et al., 2020). One way in which we could adapt
DATE to contrastive learning is to apply different augmentations (by apply-
ing different masking patterns) and minimize the cosine distance between
the representations which come from the same text corrupted in different
ways while maximizing the cosine distance between different texts. An alter-
native way of generating anomaly scores is by using energy-based models.
Recently, EBMs have become increasingly popular. An EBM can theoretically
be used as an anomaly detector by directly evaluating the energy function
(Ruff, Kauffmann, et al., 2020) to produce anomaly scores. Models such as
ELECTRA can be formulated as energy-based models (Clark, Luong, Q. Le,
et al., 2020), this raises the question if they can also be used to detect anoma-
lies. Finally, DATE demonstrates capabilities for authorship detection and
can detect stylistic differences between texts written by different authors
(see supplementary material B.2). We would like to further evaluate deep
anomaly detectors for such tasks.
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A H Y P E R PA R A M E T E R S A N D
I M P L E M E N TAT I O N

a.1 disjoint patterns analysis

We start from two observations regarding the performance of DATE, our
Anomaly Detection algorithm. First, a discriminative task performs better
if the classes are well separated (Deng, 2012) and there is a low probability
for confusions. Second, the PL score for anomalies achieves the best per-
formance when the probability distribution for its input is clearly separated.
Intuitively, for three classes, PL([0.9, 0.05, 0.05]) is better than PL([0.5, 0.3,
0.2]) because it allows PL to give either near 1 score if the class is correct,
either near 0 score if it is not, avoiding the zone in the middle where we
depend on a well chosen threshold.

Since the separation between the mask patterns greatly influences our fi-
nal performance, we next analyze our AD task from the mask pattern gen-
eration point of view. Ideally, we want to have a sense of how disjoint our
randomly sampled patterns are and make an informed choice for the pattern
generation hyper-parameters.

First, we start by computing an upper bound for the probability of having
two patterns with at least p common masked points. We have

(
S
M

)
patterns,

where S is the sequence length and M is the number of masked tokens. We
fix the first p positions that we want to mask in any pattern. Considering
those fixed masks, the probability of having a sequence with M masked
tokens, with p tokens in the first positions is r:

r =

(
S−p
M−p

)(
S
M

) . (28)

Next, the probability that two sequences mask the first p tokens is r2. But
we can choose those two positions in a

(
S
p

)
ways. So the probability that any

two sequences have at least p common masked tokens is lower than UB2:

UB2 =

(
S

p

)
r2 (29)

Next, out of our generated patterns, we sample N masks, so the probabil-
ity becomes less than the upper bound UBN:

UBN =

(
N

2

)
UB2 =

(
N

2

)(
S

p

)
r2

=

(
N

2

)(
S

p

)
(

(
S−p
M−p

)(
S
M

) )2.
(30)

In our experiments, the sequence length is S = 128 and we chose the
number of masked tokens to be between 15% and 50% (M between 19 and
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52 hyperparameters and implementation

64). We consider that two patterns are disjoint when they have less than p
masked tokens in common, for N sampled patterns.

The probability that any two patterns collide (have more than p masked
tokens in common) is very low. We compute several values for its upper
bound: UBN=100,p=12 = 5e− 4, UBN=100,p=15 = 1e− 9, UBN=10,p=15 =

1e− 11, UBN=10,p=13 = 1e− 7.
In conclusion, for our specific setup, the probability for two masks to

largely overlap (large p compared with S) is extremely small, ensuring us a
good performance in the discriminator. We take advantage of this property
of our pretext task by combining the discriminator output probabilities with
the PL score.

a.2 model implementation

We add next more details on the implementation of the modules: from the
ablation experiments in Tab. 7, Generator (small): 1 Transformer layer, with
4 self-attention heads, token and positional embeddings of size 128, hidden
layer of size 16, feedforward layer of sizes 1024 and 16; Generator (large): 1

Transformer layer, with 4 self-attention heads, token and positional embed-
dings of size 128, hidden layer of size 64, feedforward layer of sizes 1024

and 64; As empirical experiments showed us, we choose a random Genera-
tor (samples were drawn from a uniform distribution over the vocabulary)
in our final model. Discriminator: 4 Transformer layers, each with 4 self-
attention heads, hidden layers of size 256, feedforward layers of sizes of
1024 and 256, 128-dimensional token and positional embeddings, which are
tied with the generator. For other unspecified hyper-parameters we use the
ones in ELECTRA-Small model. Prediction Heads: both heads have 2 linear
layers separated by a non-linearity, ending in a classification. Loss weights:
We set the RTD λ weight to 50 as in (Clark, Luong, Q. V. Le, et al., 2020), and
the RMD µ weight to 100.



B OT H E R R E S U LT S

b.1 more qualitative and quantitative results on
ag news

In Fig. 19 we show more qualitative results, trained on different inliers. To
encourage further more detailed comparisons, we report the AUPR metric
on AG News for inliers and outliers (see Tab. 9). When all the other met-
rics are almost saturated, we notice that AUPR-in better captures the perfor-
mance on a certain split.

Figure 19: More qualitative examples.

Subset business sci sports world

AUPR-in 74.8 62.4 88.8 81.9

AUPR-out 96.1 93.5 98.5 95.5

Table 9: We report AUPR metric for AG News splits, on inliers and outliers since
this is a more relevant metric for unbalanced classes (which is the case for
all splits in text AD, as explained in Anomalies setup).
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b.2 authorship detection

The PAN 2020 (Bevendorff et al., 2020) data is collected from the FanFic-
tion website13 and represents an excerpt of one of the four shared tasks on13 https:

//www.fanfiction.net/ authorship analysis presented at PAN 2020, namely, the second one. The
data is aimed at cross-domain authorship verification, with the purpose of
understanding the associations between authors and their texts in a context
agnostic to domain-specific vocabulary.

We’ve sampled the top 19 authors from our curated dataset, each of them
having written 30 articles. We’ve then picked a subset of 10 authors from
the initial 19 for training and testing (due to time and resource constraints).
We’re treating the Authorship Verification task as a semi-supervised Anomaly
Detection problem in the following way - Let A1, ...,A19 be the texts written
by the authors, and A = {A1, ...,A19} be the set of all texts, then given an
Ak ∈ A, we set Ak to be the set of normal texts, and A \Ak to be the set of
anomalous texts.

We are trying to profile authors using DATE. We are using the same hy-
perparameters as in the “AG News” dataset experiments. The only prepro-
cessing that was done to the data is making it lower-cased. We’re reporting
scores at 1500 steps into the training process. The results of the experiments
are in Table 10.

Figure 20 shows how DATE is able to detect stylistic changes when cor-
rectly profiling an author. The model considers that certain punctuation and

train/val Usr1 Usr2 Usr3 Usr4 Usr5 Usr6 Usr7 Usr8 Usr9 Usr10

25/5 (AUROC) 100 100 98.2 99.6 100 100 96.9 100 98.4 100

25/5 (AUPR-in) 100 100 87.2 93.8 100 100 65.7 100 84.1 100

25/5 (AUPR-out) 100 100 99.9 99.9 100 100 99.8 100 99.9 100

15/15 (AUROC) 96.7 98.5 97.3 99.3 98.2 100 95.2 100 93.8 98.6

15/15 (AUPR-in) 68.2 83.6 74.6 89.9 85.0 100 57.5 100 61.1 89.9

15/15 (AUPR-out) 99.8 64.4 99.9 99.9 99.9 100 99.7 100 99.6 99.9

5/25 (AUROC) 82.7 89.1 81.7 88.6 83.2 97.4 79.4 82.3 67.7 84.4

5/25 (AUPR-in) 42.3 64.4 39.1 52.8 56.1 83.9 34.6 65.9 22.0 42.0

5/25 (AUPR-out) 98.8 89.1 98.7 99.3 98.7 99.9 98.3 97.8 97.3 99.0

1/29 (AUROC) 72.7 82.0 73.2 87.2 82.2 95.4 83.2 80.3 53.1 65.1

1/29 (AUPR-in) 20.2 33.1 15.3 43.6 41.2 66.8 29.6 42.0 12.3 17.8

1/29 (AUPR-out) 98.1 98.8 97.7 99.2 98.7 99.7 98.9 97.9 95.5 97.2

Table 10: Semi-supervised AD Performance (AUROC%, AUPR-in%, AUPR-out%)
on the PAN2020 dataset (custom setup) using DATE: The train/val ratio
is the number of samples for training per author, and number of outlier
articles per author when testing respectively. No hyperparameter tuning
was done. The AUPR-out scores are very high because AUPR is sensible
to imbalanced data.

https://www.fanfiction.net/
https://www.fanfiction.net/
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(a) Usr9 correctly identified as Usr9. Interestingly, the network identifies the use of stop-words as being anomalous.

(b) Network trained on Usr9. The network correctly classifies the texts as not being written by Usr9. Notice the fact that
the network considers that the use of punctuation is dubious.

Figure 20: DATE Qualitative results on the PAN2020 dataset. Lower PL scores are
shown in a more intense red and contribute more to a higher anomaly
probability.

word usage is dubious. When scoring an inlier entry, DATE seems to think
that some stopword usage is anomalous, this could indicate a change of
stylistic approach when an author is writing texts in different fandoms.

b.3 music genre detection

The Song Lyrics dataset14 is composed of four sources and consists of over 14 Many thanks to Matei
Bejan for collecting this
dataset: Kaggle multilingual
lyrics for genre classification

290,000 multilingual song lyrics and their respective genres: Rock, Metal,
Pop, Hip-Hop, Electronic, R&B, Country, Folk and Indie. The initial data
was forwarded from the 2018 Textract Hackathon15. This was enhanced 15

https://www.sparktech.

ro/textract-2018/

with data from three kaggle datasets: 150K Lyrics Labeled with Spotify Valence,
dataset lyrics musics and AZLyrics song lyrics.

Apart from the original 2018 Textract data, the other datasets were not
provided with a Genre feature. In order to deal with the lack of labels, a
labeling function was built using the spotipy library, which uses the Spotify
API in order to retrieve the genre of an Artist. The Spotify API returns a list
of genres for one artist, so only the most common genre to be said artists
dominant genre was considered. The results are shown in Tables 11 and 12.

https://www.kaggle.com/mateibejan/multilingual-lyrics-for-genre-classification
https://www.kaggle.com/mateibejan/multilingual-lyrics-for-genre-classification
https://www.sparktech.ro/textract-2018/
https://www.sparktech.ro/textract-2018/
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Table 11: Semi-supervised AD Performance (AUC-ROC%) on the Music Genres
datasets. We compare two classical models (Isolation Forest, One-Class
SVM) with two neural mdoels (CVDD, DATE). We are choosing the best
score per split, as detailed in Sec. 4.2.3. DATE is using the same hyper-
parameters per dataset. Interestingly, every model is able to outperform
DATE on the Hip-Hop subset, CVDD having the largest margin (+24.1%
ROC-AUC).

Inlier class iForest OC-SVM CVDD DATE

M
us

ic
G

en
re

s

Rock 45.6 44.2 45.1 54.4

Electronic 48.5 48.8 45.4 56.0

Country 57.3 57.5 54.3 70.8

Metal 55.9 46.6 48.5 56.6

Indie 51.8 47.1 45.5 57.8

Jazz 53.5 52.0 56.8 70.1

Folk 49.5 49.5 47.0 53.4

R&B 58.4 58.1 61.3 71.0

Hip-Hop 65.0 72.9 84.3 60.2

Pop 43.2 43.7 61.3 62.9

Mean 52.9 52.0 55.0 61.3

Context 1 Context 2 Context 3 Context 4 Context 5

’m livin to the que

i turnin can of mas

’re shakin could in como

y’ waitin make ’s porque

somebody walkin will that sabe

myself keepin would is desde

everybody slippin pray this boca

Table 12: CVDD context vectors. The second context is the most meaningful one
when detecting anomalies. Notice that the second context contains the
colloquial forms of verbs. The first context seems to cluster pronouns to-
gether. The third and forth contexts contains modal verbs and stopwords.
The last context vector is clustering together words in Spanish.
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Outlier CVDD DATE

Translations 43.2 55.4

Non-native 52.3 56.0

Table 13: Semi-supervised AD Performance (AUROC%) on the ENNTT dataset.
The performance is weak on both CVDD and DATE.

b.4 native language detection

ENNTT (Nisioi et al., 2016) is an English corpus of original and human-
translated texts extracted from the discussions that took place inside the
European Parliament. The dataset consists of three types of texts, gener-
ated by either native English speakers, non-native English speakers or trans-
lated from another European language. It contains 116,341 native sentences,
29,734 non-native sentences and 738,597 translated sentences.

The results when using both CVDD and DATE for one-class classification
on ENNTT are poor, as can be seen in Table 13.
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